목차 지난 글에서는 깊은 K-평균 알고리즘을 이용한 비지도 학습 코드에 대해 뜯어보았다. [PyTorch]비지도 학습 - 깊은 K-평균 알고리즘 (오토인코더 + K-평균 알고리즘) [PyTorch]비지도 학습 - 깊은 K-평균 알고리즘 (오토인코더 + K-평균 알고리즘)목차지난 글에서는 Fashion MNIST를 사용한 Vanilla GAN 코드에 대해 살펴보았다. [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network) [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network)목차지난gnidinger.tistory.com이번 글에서는 설명 가능한 AI와 CAM에 대해 알아보고, 코드를 살펴보도록 하겠다. 지난 글과 마찬가지..
목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
- Total
- Today
- Yesterday
- 스트림
- 자바
- 중남미
- a6000
- 기술면접
- 지지
- 맛집
- 리스트
- spring
- 세계일주
- 동적계획법
- RX100M5
- 스프링
- 유럽여행
- 알고리즘
- java
- Algorithm
- Python
- 세계여행
- 백준
- 면접 준비
- Backjoon
- 유럽
- 칼이사
- 여행
- 세모
- 야경
- BOJ
- 남미
- 파이썬
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |