목차 지난 글에선 CNN과 CIFAR-10 데이터셋을 이용한 이미지 분류 문제를 살펴보았다. [PyTorch]CNN을 활용한 이미지 분류 문제(CIFAR-10) [PyTorch]CNN을 활용한 이미지 분류 문제(CIFAR-10)목차 지난 글에선 기초적인 MLP를 이용한 집값 예측 모델을 만들어 보았다. 이번 글에서는 컴퓨터 비전 쪽으로 넘어와서 CNN을 이용해 CIFAR-10 데이터셋을 학습하고, 테스트 데이터를 분류하는gnidinger.tistory.com 이번 글에서는 순환 신경망RNN(Recurrent Neural Network)을 사용해 코스피 데이터를 기반으로 주식 가격을 예측하는 문제를 살펴본다. RNN은 시계열 데이터와 같은 순차적 데이터에서 매우 유용한데, 주식 가격은 과거 데이터가 현재와..
목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
- Total
- Today
- Yesterday
- Algorithm
- Python
- 동적계획법
- 면접 준비
- RX100M5
- 야경
- 스프링
- 스트림
- BOJ
- 파이썬
- 맛집
- 세계일주
- 자바
- 지지
- spring
- 여행
- 세계여행
- 유럽
- 백준
- Backjoon
- 세모
- 남미
- 리스트
- 칼이사
- a6000
- 유럽여행
- 알고리즘
- 기술면접
- java
- 중남미
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |