목차 서론 컴퓨터 비전은 이미지나 비디오에서 의미 있는 정보를 추출하는 기술로, 자율주행, 보안, 헬스케어, 제조업, 소매업 등 다양한 분야에서 사용된다. 예를 들어, 자율주행 차량은 도로에서 차량과 보행자를 인식해 안전한 주행 경로를 결정하며, 보안 시스템은 침입자를 탐지하거나 얼굴 인식을 통해 출입 통제를 할 수 있다. 헬스케어 분야에서는 의료 영상을 분석해 암과 같은 질병을 조기 진단할 수 있다. 이러한 성과는 컴퓨터 비전 기술 중 객체 인식의 발전에 크게 의존한다.객체 인식은 컴퓨터 비전의 중요한 하위 분야로, 이미지 내 객체가 무엇인지(Classification)와 그 위치(Bounding Box)를 동시에 인식하는 기술이다. 이 기술은 이미지의 정보 추출 속도를 높이고 정확도를 ..
목차 서론 트랜스포머는 2017년 구글 브레인 연구팀이 발표한 "Attention Is All You Need" 논문에서 처음 소개된 혁신적인 딥러닝 모델이다. 기존의 순환 신경망(RNN)과 합성곱 신경망(CNN)의 한계를 극복하며 등장한 트랜스포머는 자연어 처리와 컴퓨터 비전 등 다양한 분야에서 놀라운 성능을 보여주고 있다. 특히 어텐션 메커니즘을 활용한 트랜스포머는 데이터의 연관성을 효율적으로 학습하며, 병렬 처리를 통해 학습 속도를 대폭 향상했다. 이 모델은 이후 BERT, GPT 등 다양한 파생 모델의 기초가 되었으며, 현대 인공지능 기술의 핵심으로 자리 잡았다. 본 글에서는 트랜스포머의 구조와 작동 원리를 살펴보고, 기존 모델과의 차별점, 장점, 그리고 한계를 간결히 정리해 본다. ..
목차 컴퓨터 비전 분야에서 합성곱 신경망(CNN, Convolutional Neural Network)은 이미지 인식과 분류 작업의 핵심 기술로 자리 잡아 왔다. 하지만 CNN에도 한계가 존재하며, 이를 극복하기 위해 어텐션 기법과 비전 트랜스포머(ViT) 모델이 등장했다. 어텐션 기법은 비전 트랜스포머의 핵심 메커니즘으로, 두 기술은 밀접하게 연결되어 있다. 이 글에서는 CNN의 한계, 어텐션 기법의 개념과 역할, 그리고 비전 트랜스포머 모델의 특징을 차례로 설명한다. CNN의 기본 원리와 한계 CNN의 기본 원리 CNN은 이미지를 처리하기 위해 합성곱 연산을 사용하는 신경망이다. 합성곱 연산은 작은 필터를 사용해 이미지의 특정 특징(예: 가장자리, 텍스처)을 추출한다. CNN은 계층적으로 ..
목차 지난 글에서는 깊은 K-평균 알고리즘을 이용한 비지도 학습 코드에 대해 뜯어보았다. [PyTorch]비지도 학습 - 깊은 K-평균 알고리즘 (오토인코더 + K-평균 알고리즘) [PyTorch]비지도 학습 - 깊은 K-평균 알고리즘 (오토인코더 + K-평균 알고리즘)목차지난 글에서는 Fashion MNIST를 사용한 Vanilla GAN 코드에 대해 살펴보았다. [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network) [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network)목차지난gnidinger.tistory.com이번 글에서는 설명 가능한 AI와 CAM에 대해 알아보고, 코드를 살펴보도록 하겠다. 지난 글과 마찬가지..
목차지난 글에서는 Fashion MNIST를 사용한 Vanilla GAN 코드에 대해 살펴보았다. [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network) [PyTorch]생성적 적대 신경망(GANGenerative Adversarial Network)목차지난 글에서는 MNIST데이터셋을 이용한 오토인코더 모델 코드를 분석해 보았다. [PyTorch]오토인코더(Autoencoder) [PyTorch]오토인코더(Autoencoder)목차 지난 글에서는 전이 학습을 구현하고, RNN의gnidinger.tistory.com 이번 글에서는 오토인코더와 K-평균 알고리즘을 결합한 깊은 K-평균 알고리즘에 대해 알아보려 한다. 비지도학습도 K-평균 알고리즘도 처음인지라, 먼..
목차지난 글에서는 MNIST데이터셋을 이용한 오토인코더 모델 코드를 분석해 보았다. [PyTorch]오토인코더(Autoencoder) [PyTorch]오토인코더(Autoencoder)목차 지난 글에서는 전이 학습을 구현하고, RNN의 발전에 대해 가볍게 정리했다. [PyTorch]전이 학습(Transfer Learning) [PyTorch]전이 학습(Transfer Learning)목차 전이 학습(Transfer Learning) 전이 학습(Transfgnidinger.tistory.com 이번 글에서는 Fashion MNIST를 사용한 Vanilla GAN 코드에 대해 살펴본다. 언제 적 GAN이냐고 할지 모르지만, 나는 오늘이 초면이다. 가능한 샅샅이 살펴보겠다. 선 요약 이 글에서 다룰 코드는 다음..
목차 지난 글에서는 전이 학습을 구현하고, RNN의 발전에 대해 가볍게 정리했다. [PyTorch]전이 학습(Transfer Learning) [PyTorch]전이 학습(Transfer Learning)목차 전이 학습(Transfer Learning) 전이 학습(Transfer Learning)은 딥러닝 모델이 이미 학습한 정보를 새로운 작업에 재사용하는 방법이다. 예를 들어, ImageNet이라는 대규모 데이터셋에서 학습된 모델gnidinger.tistory.com[Pytorch]Vanilla RNN과 확장된 기법들: LSTM, GRU, Bidirectional LSTM, Transformer [Pytorch]Vanilla RNN과 확장된 기법들: LSTM, GRU, Bidirectional LSTM,..
목차 자바 프로그래밍을 하다 보면 객체를 복사해야 하는 상황이 자주 생긴다. 그런데 복사를 하는 방식에는 크게 두 가지가 있다. 바로 얕은 복사와 깊은 복사다. 이 두 가지는 겉보기엔 비슷해 보이지만, 동작 방식과 결과에서 큰 차이를 보인다. 천천히 그리고 가볍게 정리해 보자. 얕은 복사(Shallow Copy) 얕은 복사는 객체의 주소값만 복사하는 방식이다. 즉, 새로운 객체를 만들긴 하지만 내부에서 참조하는 필드들은 원본 객체와 동일한 주소를 공유한다. 따라서 원본 객체의 내부 값이 변경되면, 복사한 객체에서도 그 변경사항이 반영된다.public Book shallowCopy() { return new Book(this.name, this.author);}이 메서드는 새로운 Book 객체..
목차 이전 게시글에서도 순환 신경망(RNN)과 그 발전에 대해 다룬 적이 있다. 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망(Recurrent Neural Network, RNN)목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의gnidinger.tistory.com순환 신경망의 발전(The Evolution of RNN) 순환 신경망의 발전(The Evolution of RNN)목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation..
목차 전이 학습(Transfer Learning) 전이 학습(Transfer Learning)은 딥러닝 모델이 이미 학습한 정보를 새로운 작업에 재사용하는 방법이다. 예를 들어, ImageNet이라는 대규모 데이터셋에서 학습된 모델은 일반적인 이미지 분류 작업에 필요한 유용한 특성을 이미 학습했기 때문에, 이를 활용해 상대적으로 작은 데이터셋(CIFAR-10)에서 학습 시간을 단축하고 성능을 높이는 데 사용할 수 있다. 전이 학습의 중요성은 다음과 같다: 데이터 효율성: 대규모 데이터가 부족한 상황에서 모델의 일반화 능력을 향상한다.학습 시간 단축: 사전 학습된 모델을 기반으로 학습하기 때문에 초기 단계부터 학습할 필요가 없다.성능 향상: 기존 모델의 강력한 특성 표현력을 활용하여 더 나은 성능을 얻을 ..
- Total
- Today
- Yesterday
- 야경
- 기술면접
- 파이썬
- 유럽
- 스프링
- 자바
- 백준
- 면접 준비
- 칼이사
- 리스트
- 유럽여행
- Algorithm
- Backjoon
- 알고리즘
- RX100M5
- BOJ
- 맛집
- a6000
- 세모
- Python
- 여행
- 남미
- spring
- 세계여행
- 스트림
- java
- 지지
- 중남미
- 세계일주
- 동적계획법
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |