목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
목차 딥러닝의 역사와 발전: 머신러닝에서 딥러닝까지의 여정 인공 신경망의 기본 구조와 중요성 활성화 함수(Activation Functions) 이해하기 손실 함수(Loss Functions)의 역할과 중요성 딥러닝에서의 최적화: 하강법과 경사하강법 확률적 경사 하강법(Stochastic Gradient Descent, SGD) 기울기 사라짐(Vanishing Gradient) 손실 함수와 최적화 컴퓨터 비전(Computer Vision) 합성곱 연산(Convolution) 합성곱 신경망(Convolutional Neural Network, CNN) 순환 신경망(Recurrent Neural Network, RNN) 순환 신경망의 발전(The Evolution of RNN) 오토 인코더(Autoencod..
목차 문제 오늘도 서준이는 깊이 우선 탐색(DFS) 수업 조교를 하고 있다. 아빠가 수업한 내용을 학생들이 잘 이해했는지 문제를 통해서 확인해 보자. N개의 정점과 M개의 간선으로 구성된 무방향 그래프(undirected graph)가 주어진다. 정점 번호는 1번부터 N번이고 모든 간선의 가중치는 1이다. 정점 R에서 시작하여 깊이 우선 탐색으로 노드를 방문할 경우 노드의 방문 순서를 출력하자. 깊이 우선 탐색 의사 코드는 다음과 같다. 인접 정점은 내림차순으로 방문한다. dfs(V, E, R) { # V : 정점 집합, E : 간선 집합, R : 시작 정점 visited[R]
- Total
- Today
- Yesterday
- Backjoon
- a6000
- 중남미
- 유럽여행
- BOJ
- 남미
- 야경
- Algorithm
- 맛집
- 지지
- 스트림
- 동적계획법
- RX100M5
- 파이썬
- spring
- 알고리즘
- 자바
- 스프링
- 백준
- 여행
- 유럽
- 세모
- 면접 준비
- 기술면접
- 세계일주
- java
- 세계여행
- 리스트
- Python
- 칼이사
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |